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1. INTRODUCTION 2. METHODS & MODELS
In construction industry sustainability assessments for the optimi-
sation of building structures are increasingly popular [1, 2, 3]. To 
address the current advancements in material technologies and 
future economic and environmental policies the existing methods 
of life cycle sustainability, Multi-criteria Decision Making (MCDM) 
and optimisation techniques in the context of building structures 
would need to be further developed and integrated [4]. Integrated 
frameworks that take into consideration stakeholder preferences 
and subjective knowledge can not only improve the quality and ef-
ficiency of the decision processes but also enrich the hu-
man-computer interaction [5]. Based on the time the engineering 
knowledge is introduced into the optimisation procedure, three in-
tegration schemes have been identified in the literature: 1) A 
priori, 2) A posteriori and 3) Interactive [6]. The research proposes 
an a posteriori framework for the evaluation of optimised structur-
al design solutions. The proposed framework consolidates group 
decision-making processes for the prioritisation of decision re-
quirements, sustainable structural optimisation algorithms for the 
generation of cost and carbon efficient designs and MCDM tech-
niques for the final assessment of the structural alternatives. To 
demonstrate the application of the proposed framework a 
common structural system typology is used: reinforced concrete 
(RC) buildings with flat slabs and concrete columns. 
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As the complexity of building design increases the need for new sustainable decision 
paradigms in building structures would become critical in the future. Taking a compre-
hensive decision approach this study advanced structural optimisation as a practical 
and integrated way of not only establishing sustainable design solutions but also as-
sessing them based on expert knowledge. The proposed decision framework:

(1) Defines design and decision criteria using a QFD model with evidential reasoning, 
(2) Establishes structural multi-objective optimisation using constructability constraints, 
(3) Generates optimised structural designs using detailed cost and carbon objective 
functions within an NSGA-II algorithm, 
(4) Ranks optimised solutions using TOPSIS algorithms and the decision priorities 
computed in stage (1). 

The outputs from the decision framework include structural design solutions that are 
not only optimised but also enhanced with engineering expert knowledge. Results 
show that the integrated framework could help structural engineers not only identify re-
lationships between cost and embodied carbon optimum designs but also help them 
evaluate the most preferred solution based on expert knowledge.
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FIGURE 3. NORMALISED ENGINEERING DESIGN REQUIRE-

MENTS RANKINGS 

FIGURE 1. FLOW DIAGRAM OF THE PROPOSED DECISION FRAMEWORK 

FIGURE 2. COMPUTATIONAL WORKFLOW
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