Beyond Simulation: Designing For Uncertainty And Robust Solutions

Abstract

Simulation is an increasingly essential tool in the design of our environment, but any model is only as good as the initial assumptions on which it is built. This paper aims to outline some of the limits and potential dangers of reliance on simulation, and suggests how to make our models, and our buildings, more robust with respect to the uncertainty we face in design. It argues that the single analyses provided by most simulations display too precise and too narrow a result to be maximally useful in design, and instead a broader description is required, as might be provided by many differing simulations. Increased computing power now allows this in many areas.

Suggestions are made for the further development of simulation tools for design, in that these increased resources should be dedicated not simply to the accuracy of single solutions, but to a bigger picture that takes account of a design's robustness to change, multiple phenomena that cannot be predicted, and the wider range of possible solutions. Methods for doing so, including statistical methods, adaptive modelling, machine learning and pattern recognition algorithms for identifying persistent structures in models, will be identified. We propose a number of avenues for future research and how these fit into design process, particularly in the case of the design of very large buildings.

Title: Beyond Simulation: Designing For Uncertainty And Robust Solutions

Author: Sean Hanna
Author: Lars Hesselgren
Author:Victor Gonzalez
Author:Ignacio Vargas

Publication: Proceedings: Symposium on Simulation for Architecture and Urban Design at the 2010 Spring Simulation Multiconference

Year: 2010

D.O.I: 10.1145/1878537.1878727

ISBN: Insert ISBN Here

Tags: Machine Learning dynamic simulation adaptive modelling agile solutions future proofing model Next Limit Technologies pattern recognition algorithms robust design statistical methods